Steel for plastic moulding
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-performance steel for compression moulds</td>
<td>19</td>
</tr>
<tr>
<td>Plastic extrusion</td>
<td>20</td>
</tr>
<tr>
<td>High-performance steel for plastic extruders</td>
<td>21</td>
</tr>
<tr>
<td>The blow-moulding process</td>
<td>21</td>
</tr>
<tr>
<td>High-performance steel for blow-moulding moulds</td>
<td>22</td>
</tr>
<tr>
<td>Plastic moulding for large moulds</td>
<td>24</td>
</tr>
<tr>
<td>High-performance steel for large moulds</td>
<td>25</td>
</tr>
<tr>
<td>Mould frames</td>
<td>26</td>
</tr>
<tr>
<td>High-performance steel for mould frames</td>
<td>26</td>
</tr>
<tr>
<td>Moulds for plastic-extrusion lines</td>
<td>28</td>
</tr>
<tr>
<td>High-performance steel grades for plastic extruders</td>
<td>29</td>
</tr>
<tr>
<td>Steel for plastic moulding and their properties</td>
<td>30</td>
</tr>
<tr>
<td>Material data sheets</td>
<td>32</td>
</tr>
<tr>
<td>Hardness comparison table</td>
<td>60</td>
</tr>
</tbody>
</table>
Plastics – an ever growing market

Although plastics have only been in existence for about 100 years, their contemporary uses reach into virtually every area of our lives.

Applications span from bulk commodities such as packaging and reusable bottles, to high-quality articles and accessories manufactured for the consumer goods, leisure, automotive and construction industries. High-tech applications have found their way into the aerospace industry too – life today has become unimaginable without plastics.

In 2003 global plastics production exceeded the 200 million-ton threshold. The steadily increasing use of plastics requires ever more efficient and reliable processing to trim production costs. This also applies to the optimization of tool steel.

When considering the entire plastic-manufacturing process chain, it becomes evident that mould design and engineering are of outstanding importance.

For this reason plastic mould steel is of key importance, as they serve as a basis for the ultimate quality of the ready-to-use plastic product.

Each plastic product has to fulfil completely individual requirements when it comes to quality, optical and tactile appearance, surface finish and strain limits. To ensure these demands are met, high-quality and special steel is essential for the construction of a mould.

The valency of a plastic surface – whether perfectly textured, photo-etched or immaculately mirror-finished – can only be as good as the finish of the mould the plastic product has been moulded with. The better a tool steel is matched to the demands of the plastic product, the better the final product quality.
The Deutsche Edelstahlwerke steel for plastic moulding is characterized by two factors. On the one hand the use of the highest steel quality and on the other hand the steel’s properties which in each individual case can be ideally adjusted to the most diverse requirements of different dies or to those of the plastic product itself.

The use of the most modern technology for Deutsche Edelstahlwerke’s plastic mould steel meet the most rigorous demands regarding:

- purity
- polishability
- consistent hardness and microstructure
- wear resistance
- temperature resistance
- machinability
- toughness and degree of hardness
- thermal conductivity
So as to offer optimal conditions to mould manufacturers, the plastic-processing industry and other industrial users, Deutsche Edelstahlwerke extends their services into customer and application-specific consultation as well as advice on product development.

Deciding on the perfect tool steel at Deutsche Edelstahlwerke begins by consulting our plastic mould steel specialists. The demands on the final product are defined by the plastic mould strain and the demands on the required steel grade. Deutsche Edelstahlwerke delivers individual sizes ex-warehouse. Our clients are given the chance to be integrated in decision making from the extent to which pre-machining should take place, via the manufacture of components right through to the perfectly fitting moulded article. In addition to a broad spectrum of conventional steel, Deutsche Edelstahlwerke also supplies specialty materials such as Ferro-Titanit®.
PLASTICS – AN EVER GROWING MARKET
Process reliability from consultation through to the final product

The moulds used for plastic processing are very diverse in their functionality and the demands made on them. The correct choice and treatment of the steel grade are decisively influential on the quality and resulting profitability of plastic production.

So as to ensure the client’s demands are met, we rely on a highly experienced group of specialists in the steel-for-plastic-moulding area. Together with the mould manufacturers, they constitute a perfectly coordinated team to determine which steel grade and quality are most appropriate to the individual profile demands as characterized by the final plastic product.

To complement the know-how of our steel specialists, we are able to rely on the most modern production facilities backed up by decades of experience in every area dealing with heat treatment. Furthermore, our active and certified quality assurance system (DIN EN 14001, DIN EN ISO 9001, QS 9000, VDA 6.1 TS 16949 and KTA 1401) warrants the production of an individually defined steel grade with continuous quality consistence.

Precision for mould manufacturers

Our competence begins with advice on the choice of the most suitable steel and extends to the development of new specific tool-steel grades. Not only do you have the choice between the various forms delivered from our extensive stock and product range, but you also determine whether the mould is to be delivered in a pre-machined or ready-to-install state.

Deutsche Edelstahlwerke then reliably delivers the chosen steel grade fast and in any quantity desired – and always with consistent quality. This applies to all important markets worldwide via the distribution network of the Swiss Steel Group.

We guarantee our clients customized precision from the steel production stage right through to machining – and this mould after mould.

Benefits for the mould manufacturers are:
» high degree of purity
» excellent polishability
» exceptional texturing properties
» consistent microstructure
» optimal machinability
» reproducible heat treatment
» very short delivery times
» competent advisors
» development of new steel grades
Profitability for the plastic-processing industry

Long exposure times and high-quality continuity for every plastic product are generally expected from the mould in plastic processing.

In order to achieve this, the dies have to be exceptionally finely tuned to the specific properties of the plastic used and to the demands of the final plastic product.

Many years of experience, coupled with innovative material technology in production together with treatment of long products – made of quality steel – have placed us in a position to deliver tailor-made steel grades to satisfy mechanical, thermal and chemical demands of the plastic products.

Our technicians provide advice and support even when problems with the exposure time for the moulds occur. They are able to produce findings for rapid and long-term damage repair through assessment and material testing.

The ensuing benefits for the plastic mould manufacturer are:
» excellent thermal conductivity
» optimal wear resistance
» unique compression strength,
» hardness and toughness
» corrosion resistance
» low-maintenance costs
» minimum mould maintenance
» extraordinary dimensional stability
» good repair weldability

Dependability for the plastic user

Because the quality of the steel used for plastic moulding is crucial for the processing quality of the final plastic product, it is highly recommended to consult with Deutsche Edelstahlwerke’s specialists at an early stage – optimally at the planning stage. Our know-how and technical advice mean production security right from the start. The advantage of fine tuning at preliminary stages results in minimization of production costs.

Deutsche Edelstahlwerke supplies the chosen steel grade or the pre-machined moulds to mould manufacturers throughout the world. They then produce the mould. Our global supply network of the Swiss Steel Group concurrently guarantees dependable delivery and highest quality on site.

The resulting benefits for the plastic user are:
» technical consultation
» shorter delivery times
» long-term know-how
» plastic surfaces reproducible at any time
» consistent quality
Our technology and experience – your guarantee for premium quality

The purity and homogeneity of our cold-work tool steel and high-speed steel stem from producing them in our modern steelworks at Witten and Siegen. We fulfil our clients’ predefined demands by means of precision alloying and using process specifications for melting, shaping and heat treatment.

The tool steel produced by Deutsche Edelstahlwerke is melted in 130-ton electric arc furnaces. A subsequent analytical fine-tuning is carried out in a ladle furnace, followed by vacuum degassing of the steel just before casting.

In order to cast the metallurgically treated molten metal, two processes can be applied depending on the required size of the final product. Usually an optimized vertical continuous casting method is used, but for large forging sizes, ingot casting is employed.
Custom remelting

For tool steel grades having to satisfy especially high levels of toughness, homogeneity and purity standards, Deutsche Edelstahlwerke has several electroslag remelting furnaces (ESRs) as well vacuum-arc remelting furnaces (VAR) at its disposal.

The decision as to which process and furnace to use is predetermined by the desired quality the remelted steel should have. Electroslag remelting (ESR) produces noticeably refined sulfidic purity in comparison to non-remelted steel. To improve oxidic purity, vacuum-arc remelting (VAR) is applied.

Individually variable heat treatment

The integration of the previous Thyssen hardening shops into the Deutsche Edelstahlwerke group has enabled us to build on decades of tradition in all fields of heat treatment. From a practical point of view, we are now able to manufacture products using the complete production chain – starting with steel production, via presmachining to refining through to heat treatment. Our one-stop solution is invaluable for the world’s most important markets and facilitates fulfilment of the most discerning tool quality prerequisites.

In our hardening shops of the Swiss Steel Group across the continents, we have vacuum-tempering furnaces, inert gas plants and plasma-nitriding plants for thermochemical treatments at our disposal. Thanks to computer-controlled process flows, the reproducibility of heat treatment is guaranteed at any time – from the initial inspection of incoming shipments through to the final heat treated product.

A bonus for our clients

Through the use of a precision-hardening process – a Deutsche Edelstahlwerke development – we are in the position to reduce the deformation of thin components to a minimum (e.g. with guide strips).
Processes and steel for plastics processing

As the processing methods for plastics vary to a great extent, the demand profile of the steel moulds for plastic moulding may show very considerable differences. Consequently, different steel grades are inevitable to attain a perfect final plastic product.

Deutsche Edelstahlwerke supplies superlative tool steel for each type of application and every stage related to plastic processing.

The most important Deutsche Edelstahlwerke steel grades for moulds used in different processing methods are referred to in detail on the following pages.

Steel for plastic moulding is used for:
- injection moulding
- compression moulding
- plastic extrusion
- blow moulding
- large moulds
- mould frames
- extruders
Overview of plastic mould steel

<table>
<thead>
<tr>
<th>Steel for plastic moulding</th>
<th>Injection moulding</th>
<th>Compression</th>
<th>Extrusion</th>
<th>Blow moulding</th>
<th>Large moulds</th>
<th>Mould frames</th>
<th>Extruders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formadur® 2083</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formadur® 2083 Superclean</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formadur® 2085</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>Formadur® 2162</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formadur® 2190 Superclean</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formadur® 2311</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formadur® 2312</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>Formadur® 2316</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Formadur® 2316 Superclean</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>Thermodur® 2343 EFS</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermodur® 2343 EFS Superclean</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermodur® 2344 EFS</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermodur® 2344 EFS Superclean</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryodur® 2357</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formadur® 2361</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryodur® 2363</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryodur® 2379</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryodur® 2709</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formadur® 2711</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formadur® 2738</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formadur® 2764</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryodur® 2767</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryodur® 2842</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formadur® 2891</td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryodur® 2990</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapidur® 3343</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formadur® PH X Superclean</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formadur® PH 42 Superclean</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formadur® 320</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>Corroplast®</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Injection moulding

Injection moulding is the most significant method employed to produce moulded parts for thermoplastics. It is also used for the processing of thermosetting plastics and elastomers. Injection moulding is ideal for the plastics manufacturer producing such products as cogwheels for watches, or bumpers and mudguards for automobiles.

During the moulding process the smelted plastic is injected into a die which then forms the mould cavity. Here the plastic develops the desired shape and cools. The finish of the final product is characterized by three factors: the type of plastic used, the processing parameters and the injection mould itself.

The basic tasks of an injection mould are to intake the melt, distribute and form it and to cool it rendering a solid state object. Finally the finished product is ejected. For this reason an appropriate steel grade is of paramount importance for the thermal design of a mould, since differences in the die’s surface temperature or wall thickness bring about varying cooling conditions and thereby influence the properties of the moulded part.
INJECTION MOULDING

High-performance steel for injection moulds

Additionally to a broad range of globally established high-quality standard steel grades, Deutsche Edelstahlwerke provides further steel with specific qualities for injection moulds. Please see the product table below for property comparisons. We have highlighted the following steel grades as most representative of our complete range.

Formadur® PH X Superclean is an extremely corrosion-resistant, precipitation-hardenable and remelted steel grade exhibiting outstanding polishability. Typical operational applications of this very pure steel include spectacles lenses, headlight moulds for the automobile industry and components for the aeronautics and chemical industries.

Formadur® PH 42 Superclean is a precipitation-hardenable remelted steel for plastic moulding, exhibiting excellent polishability and weldability as well as outstanding toughness and texturing properties. This steel grade is ideal for extensively used injection moulds.

Corroplast® is a low-carbon stainless steel which machines more easily than any other stainless steel for plastic moulding known to date. Since Corroplast® is supplied at an approximate hardness of 320 HB, this steel grade does not necessitate any additional heat treatment. Corroplast® is suitable for mould frames and plastic moulds with standard demands on polishability and resistance to condensation and cooling water.

Cryodur® 2709 is characterized by the following properties – extreme toughness, polishability, good texturing properties and weldability. The martensitic hardenable coldwork steel is employed for moulds and mould cores with complex geometry used under extreme flexural stress.

Cryodur® 2357 is a steel with good toughness also at an elevated hardness. The chemical composition makes Cryodur® 2357 suitable for air hardening for tools with medium wall thicknesses, bigger cross sections must be quenched in oil. Good polishability in combination with high wear resistance and high compressive strength makes Cryodur® 2357 universally useable in mould manufacturing.
For compression moulding, a compression moulding material, usually pre-heated and in the form of powder, grain or pellets, is poured into the mould. The moulding material is plastified using pressure and heat and formed in such a way that the plastic to be manufactured completely fills the mould cavity.

Decisive process parameters for a mould are pressure and temperature.

When manufacturing the mould plates and all shaping elements of the mould it is important that the temperature of the mould during working should not exceed the tempering temperature and thereby the retention of hardness of the steel. Wear resistance is a further but important criterium made on the tool steel, since the fillers contained in the compression-moulding material have the capacity to create extreme wear and tear. This is the case, for example, with fibreglass containing plastics.
We have chosen two steel grades to represent a larger selection.

Formadur® 320 is a pre-hardened high-performance steel for the production of very large-sized moulds and dies. This steel grade is supplied at a hardness of 280 – 325 HB and of 310 – 355 HB achieved by quenching and tempering. It exhibits very good texturing properties, machinability, weldability and nitridability. In comparison to steel grades used to date, Formadur® 320 features increased thermal conductivity as well as enhanced quenching and tempering properties. Due to its improved toughness and a hardness symmetrically distributed over the entire cross section, this high-tech steel grade is recommended for the construction of more complicated moulds, such as those needed for bumpers, sinks and cladding for automobile and plane interiors.

Cryodur® 2990 is a newly developed, ledeburitic cold work tool steel with high hardness, good toughness and high tempering strength which simultaneously displays a high wear resistance. Its excellent compression strength, high abrasion and adhesion resistance create a property profile ideal for pressure pads and plastic moulds.

High-performance steel for compression moulds

When it comes to moulds, Deutsche Edelstahlwerke does not only supply an extensive range of high-quality quenched and tempered, annealed and solution-annealed steel grades, but other steel with special properties.
Extrusion is a shaping process, the result of which are strand-like plastic semi-finished or continuous products. Product examples include plastic profiles or continuous-strand pipes. In this process, the plastified plastic to be processed is pressed by means of an extruder from a pressure chamber through a mould orifice. The profiles of the female mould have to be purpose shaped to enable the extrusion of complicated cross sections of the strand.

Decisive factors for the success of an extrusion process are shape retention and dimensional stability of the female mould, which ensure the manufacture of precise profiles and the ensuing products necessitating standardized high quality. Resistance to mechanical wear and corrosion are prerequisites the steel used to produce the mould also has to meet.
High-performance steel for plastic extruders

Besides its established high-quality standard steel (quenched and tempered or annealed), Deutsche Edelstahlwerke supplies steel grades with special qualities for extruders.

We would like to highlight the following steel grades from our complete product range. Please see the product table below for a comparison of properties.

Formadur® 2316 is a standard steel grade, which is supplied quenched and tempered at a working hardness of approximately 300 HB. Due to its increased chromium content, this grade is endowed with greater corrosion resistance. The steel shows an appropriate polishability, weldability and machinability. Formadur® 2316 is mainly used for moulds to process corrosive plastics as well as for mould inserts, slot dies, profile moulds and sizing dies.

Formadur® PH X Superclean is an extremely corrosion-resistant, precipitation-hardenable and remelted steel grade exhibiting outstanding polishability. A derivative of Formadur® 2316, this exceptionally pure premium steel grade features better wear resistance and high dimensional stability after machining. Formadur® PH X Superclean is, amongst other purposes, used for heavily strained female moulds and for continuous or hollow profiles such as window frames.

The blow-moulding process

Blow moulding is the usual production process for hollow plastic objects such as bottles, canisters and similar containers. This process is also used for the making of flat and tubular films. A blow mould is constructed from several parts.

In the production of hollow articles such as bottles, a preform is moulded by means of a blowing mandrel and compressed air. The manufacture of flat films using this method is carried out by means of slot dies. Tubular films are produced with blow heads.

Blow moulds are particularly subjected to increased wear and tear at the parting lines. These mechanically heavily stressed parts should, therefore, be replaceable and made from high tensile steel.

In PET processing for example, cooling is important for the quality and performance of a blow mould. For this reason steel grades with particularly good thermal conductivity should be taken into consideration when choosing materials.
High-performance steel for blow-moulding moulds

For blow moulding Deutsche Edelstahlwerke supplies a broad assortment of high-quality quenched and tempered steel grades with highly minimized distortion.

Regardless whether intended for use as a slot mould, blow head or for a hollow article mould (for products such as bottles or canisters), every listed steel grade is perfectly designed for different blow moulds.

The blow mould product range consists of the following steel grades. Please refer to the product table for property comparisons.

Corroplast® is a low-carbon stainless tool steel which is more easily machined than any other stainless steel for plastic moulding known to-date. Since Corroplast® is supplied at an approximate hardness of 320 HB, this steel grade does not necessitate any additional heat treatment. Corroplast® is suitable for mould frames and plastic moulds, meeting standard demands on polishability and resistance to condensation and cooling water.

Formadur® 2738 is a quenched and tempered steel for plastic moulding and comes at a hardness of 280 to 325 HB. This steel grade is a derivative of Formadur® 2311 and is characterized by good machinability and polishability. In comparison to Formadur® 2311 it is quenched and tempered more easily when thicker than 400 mm.

Formadur® 2316 and Formadur® 2316 Superclean are standard steel grades and are supplied quenched and tempered at a working hardness of approximately 300 HB. Due to their increased chromium content these grades display a higher corrosion resistance. The steels' polishability and weldability properties are good – likewise their machinability. These corrosion-resistant steel grades are mainly used for the processing of chemically aggressive plastics like PVC.

Formadur® PH X Superclean is an extremely corrosion-resistant, precipitation-hardenable and remelted steel grade with outstanding polishability. This exceptionally pure premium steel grade is a derivative of Formadur® 2316, featuring better wear resistance and greater dimensional stability after machining.
The percentage of plastic parts used in the construction of automobiles and other vehicles is steadily rising. The size of the required moulds is likewise increasing, to the extent that the steel ingots now need to have cross sections up to 2 metres and can weigh up to 100 tons. The demands made on the moulds used to produce the pre-machined plastic moulds are determined on the one hand by the large plastic product dimensions and on the other hand by the required surface quality of the parts (e.g. bumpers, mudguards or bonnets) which have to be supplied ready-to-install.

The moulds used in the manufacturing of large plastic parts have to have good machinability and high dimensional stability to be able to guarantee distortion-minimized finishes.

Another client extra
As a special service Deutsche Edelstahlwerke offers its clients the pre-machining of large moulds. The electronic transfer of CAD data enables us to manufacture large moulds with very short delivery times.
High-performance steel for large moulds

The range of high-quality steel grades for plastic moulding designed for large moulds at Deutsche Edelstahlwerke covers quenched and tempered steel grades, which are characterized by high hardenability and machinability as well as by excellent polishability and texturing properties.

The product range consists of the following steel grades. Please see the product table below for property comparisons.

Formadur® 2311 is a quenched and tempered standard steel grade supplied at a hardness of 280 to 325 HB. The grade is produced with minimum sulphur content and is characterized by its good machinability, weldability and nitriding suitability. It is wear resistant and displays sufficiently high robustness. Quenching and tempering is limited to a thickness of around 400 mm.

Formadur® 2312 is a pre-hardened plastic-moulding steel grade supplied at a hardness of 280 to 325 HB. With an increased sulphur content this grade shows very good machinability and is well suited for nitriding. However, polishability and texturing properties are limited.

Formadur® 2711 is a tough quenched and tempered steel grade for plastic moulding with a high degree of purity. This grade is supplied at a hardness of 355 to 400 HB (square, flat) and 370 to 410 HB (diameter). It has excellent texturing properties, is well suited to mirror polishing and can be hard chromium plated. It has a higher compression strength than Formadur® 2738. Formadur® 2711 is preferential for plastic moulds with increased demands on compression strength and wear resistance.

Formadur® 2738 is a quenched and tempered steel for plastic moulding, is supplied at a hardness of 280 to 325 HB, appropriate for texturing and is a derivative of Formadur® 2311. It exhibits high machinability and polishability and is more easily quenched and tempered than Formadur® 2311. Formadur® 2738 is used for large plastic moulds with deep engraving where there is intensive impact on the core.

Formadur® 320 is a pre-hardened steel for plastic moulding, being supplied at a hardness of 280 – 325 HB and of 310 – 355 HB. It is extremely easily textured and machined as well as being unproblematic when polished and welded. In comparison to Formadur® 2738 the quenching and tempering properties have been further improved. Formadur® 320 is recommended for dies and moulds of very large dimensions for products such as bumpers, plastic containers, TV cases and dashboards.
Mould frames

Following the two-piece construction principle, these dies consist of a mould frame and respective mould inserts. Depending on the size of the plastic product to be manufactured, up to 192 mould inserts (so-called cavities) can be integrated into a single mould frame.

Typical end products for this technology include screw caps for beverage bottles and PET preforms.

High-performance steel for mould frames

The range of high-quality steel grades for mould frames at Deutsche Edelstahlwerke include pre-hardened steel grades with excellent machinability. Other grades are available which are corrosion resistant with particularly low compression strength. Please see the product table for property comparisons.

Formadur® 2085 combines excellent corrosion resistance with economical machinability for sulphurized plastic moulding steel. This is why this quenched and tempered steel grade is the perfect fit for mould frames. Formadur 2085® is supplied at a hardness of 280 to 325 HB.

Formadur® 2312 is a pre-hardened steel grade for plastic moulding supplied at a hardness of 280 to 325 HB. This grade shows very good machinability and is well suited for nitriding. Texturing properties and polishability are restricted by its high sulphur content.

Corroplast® is a low-carbon stainless steel which machines more easily than any other stainless steel for plastic moulding known to date. Since Corroplast® is supplied at an approximate hardness of 320 HB, this steel grade does not necessitate any additional heat treatment. Corroplast® is particularly suitable where there is a high corrosion potential. Further advantages are exceptional toughness, particularly low stress and good weldability.
The plastification, transport and compression of the melted plastic necessitate an extrusion line.

The different elements of the extrusion line include cylinders, screws, screw tips, retaining valve and other components.

Deutsche Edelstahlwerke supplies a product range especially adapted to these needs, consisting of either distortion-minimized, quenched and tempered steel grades with a high wear resistance, or steel grades which are to be hardened at a later stage.
In addition to steel grades such as Formadur® 2891, which are supplied for normal applications and usually in a quenched and tempered condition, Deutsche Edelstahlwerke produces other high-performance steel that meet special demands. These include excellent wear resistance accompanied by exceptional toughness as well as torsion resistance. All of the grades listed meet these requirements. Please see the product table for property comparisons.

Cryodur® 2990 is a newly developed, ledeburitic cold-tool steel with great hardness, good toughness and a high tempering strength. At the same time it also exhibits very high wear resistance. Its high compression strength and resistance to abrasive and adhesive wear lend this special steel an ideal property profile for use with pressure pads and plastic moulds.

Formadur® 2891 is an aluminium-alloyed nitriding steel specially designed for extruders. It is used for plasticising devices, screw cylinders and extruder screws.

Thermodur® 2343 EFS and **Thermodur® 2343 EFS Superclean** are the first choice when it comes to torsion resistance and toughness. Surface-treated screws made of these high-performance steel grades are ideal even for the most demanding purposes.
Steel for plastic moulding and their properties

<table>
<thead>
<tr>
<th>Brand</th>
<th>Wear resistance</th>
<th>Corrosion resistance</th>
<th>Toughness</th>
<th>Polishability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formadur® 2083</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
</tr>
<tr>
<td>Formadur® 2083 Superclean</td>
<td>● ●</td>
<td>● ●</td>
<td>● ●</td>
<td>● ●</td>
</tr>
<tr>
<td>Formadur® 2085</td>
<td>●</td>
<td>● ●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Formadur® 2162</td>
<td>● ●</td>
<td>●</td>
<td>●</td>
<td>● ● ●</td>
</tr>
<tr>
<td>Formadur® 2190 Superclean</td>
<td>● ●</td>
<td>● ●</td>
<td>●</td>
<td>● ● ●</td>
</tr>
<tr>
<td>Formadur® 2311</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Formadur® 2312</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Formadur® 2316</td>
<td>●</td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
</tr>
<tr>
<td>Formadur® 2316 Superclean</td>
<td>●</td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
</tr>
<tr>
<td>Thermadur® 2343 EFS</td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
</tr>
<tr>
<td>Thermadur® 2343 EFS Superclean</td>
<td>● ●</td>
<td>●</td>
<td>● ● ●</td>
<td>● ● ●</td>
</tr>
<tr>
<td>Thermadur® 2344 EFS</td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>●</td>
</tr>
<tr>
<td>Thermadur® 2344 EFS Superclean</td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
</tr>
<tr>
<td>Cryodur® 2357</td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
</tr>
<tr>
<td>Formadur® 2361</td>
<td>● ● ●</td>
<td>● ●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cryodur® 2363</td>
<td>● ●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cryodur® 2379</td>
<td>● ● ●</td>
<td>●</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Cryodur® 2709</td>
<td>● ●</td>
<td>●</td>
<td>● ● ●</td>
<td>● ● ●</td>
</tr>
<tr>
<td>Formadur® 2711</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>● ●</td>
</tr>
<tr>
<td>Formadur® 2738</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Formadur® 2764</td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ● ●</td>
</tr>
<tr>
<td>Cryodur® 2767</td>
<td>● ●</td>
<td>●</td>
<td>● ●</td>
<td>● ●</td>
</tr>
<tr>
<td>Cryodur® 2842</td>
<td>● ●</td>
<td>●</td>
<td>●</td>
<td>● ●</td>
</tr>
<tr>
<td>Formadur® 2891</td>
<td>● ● ●</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Cryodur® 2990</td>
<td>● ● ●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Rapidur® 3343</td>
<td>● ● ●</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>Formadur® PH X Superclean</td>
<td>●</td>
<td>● ● ●</td>
<td>● ● ●</td>
<td>● ● ●</td>
</tr>
<tr>
<td>Formadur® PH 42 Superclean</td>
<td>●</td>
<td>●</td>
<td>● ●</td>
<td>● ● ●</td>
</tr>
<tr>
<td>Formadur® 320</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Corroplast®</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Texturing properties</td>
<td>Weldability</td>
<td>Machinability</td>
<td>Nitridability</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>● ● ● ● ● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td>● ● ● ● ● ●</td>
<td></td>
</tr>
<tr>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td>○ ○ ○ ○ ○ ○</td>
<td></td>
</tr>
</tbody>
</table>
Material Data Sheets

Consecutively the most important materials in the area of plastic mould steel with its steel properties, standards, physical properties, applications and heat treatment.

<table>
<thead>
<tr>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formadur® 2083/2083 Superclean</td>
</tr>
<tr>
<td>Formadur® 2085</td>
</tr>
<tr>
<td>Formadur® 2162</td>
</tr>
<tr>
<td>Formadur® 2190 Superclean</td>
</tr>
<tr>
<td>Formadur® 2311</td>
</tr>
<tr>
<td>Formadur® 2312</td>
</tr>
<tr>
<td>Formadur® 2316/ 2316 Superclean</td>
</tr>
<tr>
<td>Thermodur® 2343 EFS/2343 EFS Superclean</td>
</tr>
<tr>
<td>Thermodur® 2344 EFS/ 2344 EFS Superclean</td>
</tr>
<tr>
<td>Cryodur® 2357</td>
</tr>
<tr>
<td>Formadur® 2361</td>
</tr>
<tr>
<td>Cryodur® 2363</td>
</tr>
<tr>
<td>Cryodur® 2379</td>
</tr>
<tr>
<td>Cryodur® 2709</td>
</tr>
<tr>
<td>Formadur® 2711</td>
</tr>
<tr>
<td>Formadur® 2738</td>
</tr>
<tr>
<td>Formadur® 2764</td>
</tr>
<tr>
<td>Cryodur® 2767</td>
</tr>
<tr>
<td>Cryodur® 2842</td>
</tr>
<tr>
<td>Formadur® 2891</td>
</tr>
<tr>
<td>Cryodur® 2990</td>
</tr>
<tr>
<td>Rapidur® 3343</td>
</tr>
<tr>
<td>Formadur® PH X Superclean</td>
</tr>
<tr>
<td>Formadur® PH 42 Superclean</td>
</tr>
<tr>
<td>Formadur® 320/320 Superclean</td>
</tr>
<tr>
<td>Corroplast®</td>
</tr>
</tbody>
</table>
Formadur® 2083/2083 Superclean

X40Cr14

| C 0.40 | Cr 13.00 |

Steel properties
Corrosion-resistant, good polishability. We recommend the use of Formadur® 2083 Superclean for the highest demands on polishability.

Standards
- **AISI** 420
- **AFNOR** Z40C14

Coefficient of thermal expansion

<table>
<thead>
<tr>
<th>bei °C</th>
<th>20 - 100</th>
<th>20 - 150</th>
<th>20 - 200</th>
<th>20 - 250</th>
<th>20 - 300</th>
<th>20 - 350</th>
<th>20 - 400</th>
<th>20 - 450</th>
<th>20 - 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-6} m/(m • K)</td>
<td>11.1</td>
<td>11.3</td>
<td>11.6</td>
<td>11.8</td>
<td>12.0</td>
<td>12.3</td>
<td>12.4</td>
<td>12.5</td>
<td>12.6</td>
</tr>
</tbody>
</table>

Thermal conductivity at °C

| W/(m • K) | 22.6 | 24.0 | 24.6 | 24.9 | 24.4 | 23.7 |

Applications
Moulds for processing plastics with corrosive reactions.

Heat treatment

<table>
<thead>
<tr>
<th>Soft annealing °C</th>
<th>760 – 800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling</td>
<td>Furnace</td>
</tr>
<tr>
<td>Hardening °C</td>
<td>1000 – 1050</td>
</tr>
<tr>
<td>Quenching</td>
<td>Oil or saltbath, 500 – 550 °C</td>
</tr>
<tr>
<td>Hardness after quenching HRC</td>
<td>56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tempering °C HRC</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness HB</td>
<td>56</td>
<td>55</td>
<td>52</td>
<td>51</td>
<td>52</td>
<td>40</td>
</tr>
</tbody>
</table>

Time-temperature-transformation diagram

Tempering diagram
Formadur® 2085

X33CrS16 C 0.33 Cr 16.00 S 0.05 Ni 0.50

Steel properties
Pre-hardened corrosion-resistant mould frame steel, hardness in as-delivered condition of 280 to 325 HB. Improved machinability in comparison to Formadur® 2316.

Standards
AISI – 420FM

Applications
Mould frames, components, plastic moulds.

Heat treatment
<table>
<thead>
<tr>
<th>Soft annealing °C</th>
<th>Cooling</th>
<th>Hardness HB</th>
</tr>
</thead>
<tbody>
<tr>
<td>850 – 880</td>
<td>Furnace</td>
<td>max. 230</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardening °C</th>
<th>Quenching</th>
<th>Hardness after quenching HRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 – 1050</td>
<td>Oil</td>
<td>100 200 300 400 450 500 550 600</td>
</tr>
<tr>
<td>HRC</td>
<td></td>
<td>48 48 47 46 47 47 36 30</td>
</tr>
</tbody>
</table>

Time-temperature-transformation diagram

Tempering diagram
Formadur® 2162

21MnCr5
C 0.21 Mn 1.30 Cr 1.20

Steel properties
Case hardening steel, good polishability, suitable for cold hobbing.

Standards
AISI – P2

Physical properties
Coefficient of thermal expansion
<table>
<thead>
<tr>
<th>Temperature Range °C</th>
<th>20 - 100</th>
<th>20 - 200</th>
<th>20 - 300</th>
<th>20 - 400</th>
<th>20 - 500</th>
<th>20 - 600</th>
<th>20 - 700</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.2</td>
<td>12.9</td>
<td>13.5</td>
<td>13.9</td>
<td>14.2</td>
<td>14.5</td>
<td>14.8</td>
</tr>
</tbody>
</table>

Thermal conductivity at °C
<table>
<thead>
<tr>
<th>Temperature Range °C</th>
<th>20</th>
<th>350</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>39.5</td>
<td>36.5</td>
<td>33.5</td>
</tr>
</tbody>
</table>

Applications
Mirror-finished plastic moulds and guide pins.

Heat treatment

<table>
<thead>
<tr>
<th>Process</th>
<th>Temperature Range °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft annealing</td>
<td>670 – 710</td>
</tr>
<tr>
<td>Carburizing</td>
<td>870 – 900</td>
</tr>
<tr>
<td>Intermediate annealing</td>
<td>620 – 650</td>
</tr>
<tr>
<td>Hardening</td>
<td>810 – 840</td>
</tr>
<tr>
<td>Quenching</td>
<td>Oil or saltbath, 180 – 220 °C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature Range °C</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>61</td>
<td>60</td>
<td>57</td>
<td>54</td>
<td>50</td>
<td>48</td>
</tr>
</tbody>
</table>

Tempering °C
<table>
<thead>
<tr>
<th>Temperature Range °C</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>61</td>
<td>60</td>
<td>57</td>
<td>54</td>
</tr>
</tbody>
</table>

Time-temperature-transformation diagram

Tempering diagram
Formadur® 2190 Superclean

(X37Cr13) C 0.37 Si 0.90 Mn 0.50 Cr 13.60 V 0.30

Steel properties

- Corrosion-resistant, very good polishability.

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>Coefficient of thermal expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>at °C 20 - 100 20 - 150 20 - 200 20 - 250 20 - 300 20 - 350 20 - 400 20 - 450 20 - 500</td>
</tr>
<tr>
<td>10^-6 m/(m • K)</td>
<td>10.7 11.0 11.2 11.5 11.7 11.9 12.1 12.3 12.4</td>
</tr>
</tbody>
</table>

Quenched and tempered

- Thermal conductivity at °C: 23 150 300 350 400 500
- W/(m • K): 21.5 23.2 23.9 24.3 24.2 24.0

Applications

- Moulds for processing of corrosive plastics.

Heat treatment

- Soft annealing °C: 760 – 800
- Hardening °C: 1000 – 1050
- Tempering °C: 100 200 300 400 500 600

- Cooling: Furnace
- Quenching: Oil or saltbath, 500 – 550 °C
- Hardness HB max. 230
- Hardness after quenching HRC 56

Tempering diagram

Reference numbers in brackets are not standardized in EN ISO4957.
Formadur® 2311

<table>
<thead>
<tr>
<th>40CrMnMo7</th>
<th>C 0.40</th>
<th>Mn 1.50</th>
<th>Cr 1.90</th>
<th>Mo 0.20</th>
</tr>
</thead>
</table>

Steel properties
Pre-hardened plastic mould steel, hardness in as-delivered condition 280 to 325 HB. Good machinability, suitable for texturing, better polishability than Formadur® 2312.

Standards
AISI P20

Physical properties

Coefficient of thermal expansion

<table>
<thead>
<tr>
<th>Temperature at °C</th>
<th>20 - 100</th>
<th>20 - 150</th>
<th>20 - 200</th>
<th>20 - 250</th>
<th>20 - 300</th>
<th>20 - 350</th>
<th>20 - 400</th>
<th>20 - 450</th>
<th>20 - 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^{-6}\text{ m/(m} \cdot \text{K)}$</td>
<td>12.6</td>
<td>12.8</td>
<td>13.0</td>
<td>13.3</td>
<td>13.5</td>
<td>13.7</td>
<td>13.9</td>
<td>14.1</td>
<td>14.3</td>
</tr>
</tbody>
</table>

Thermal conductivity at °C

<table>
<thead>
<tr>
<th>Temperature at °C</th>
<th>20 - 100</th>
<th>20 - 150</th>
<th>20 - 200</th>
<th>20 - 250</th>
<th>20 - 300</th>
<th>20 - 350</th>
<th>20 - 400</th>
<th>20 - 450</th>
<th>20 - 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{W/(m} \cdot \text{K)}$</td>
<td>32.5</td>
<td>32.9</td>
<td>31.3</td>
<td>30.2</td>
<td>29.5</td>
<td>27.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applications
Plastic moulds, mould frames for plastic moulds and pressure casting moulds and recipient sleeves.

Heat treatment

Soft annealing °C
710 – 740

Cooling
Furnace

Hardness HB
max. 235

Hardening °C
840 – 870

Quenching
Oil or saltbath, 180 – 220 °C

Hardness after quenching HRC
51

Tempering °C

<table>
<thead>
<tr>
<th>HRC</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>50</td>
<td>48</td>
<td>46</td>
<td>42</td>
<td>36</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Time-temperature-transformation diagram

[Diagram showing time-temperature-transformation diagram]

Tempering diagram

[Diagram showing tempering diagram]
Formadur® 2312

40CrMnMoS8-6[

<table>
<thead>
<tr>
<th>C 0.40</th>
<th>Si 0.35</th>
<th>Mn 1.50</th>
<th>Cr 1.90</th>
<th>Mo 0.20</th>
<th>S 0.05</th>
</tr>
</thead>
</table>

Steel properties
Quenched and tempered plastic mould steel with a hardness of 280 to 325 HB in as-delivered condition. Improved machinability in comparison with Formadur® 2311. Polishable.

Standards
AISI P20+S

Physical properties
Coefficient of thermal expansion
at °C

<table>
<thead>
<tr>
<th></th>
<th>20 - 100</th>
<th>20 - 200</th>
<th>20 - 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻⁶ m/(m • K) Annealed</td>
<td>12.5</td>
<td>13.4</td>
<td>13.9</td>
</tr>
<tr>
<td>10⁻⁶ m/(m • K) Quenched and tempered</td>
<td>12.3</td>
<td>13.0</td>
<td>13.7</td>
</tr>
</tbody>
</table>

Thermal conductivity at °C

<table>
<thead>
<tr>
<th></th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/(m • K) Annealed</td>
<td>40.2</td>
<td>40.9</td>
<td>40.3</td>
<td>40.0</td>
<td>39.0</td>
</tr>
<tr>
<td>W/(m • K) Quenched and tempered</td>
<td>39.8</td>
<td>40.4</td>
<td>40.4</td>
<td>39.9</td>
<td>39.0</td>
</tr>
</tbody>
</table>

Applications
Plastic moulds, mould frames for plastic and pressure casting moulds, recipient sleeves, brake dies.

Heat treatment

<table>
<thead>
<tr>
<th>Soft annealing °C</th>
<th>Cooling</th>
<th>Hardness HB</th>
</tr>
</thead>
<tbody>
<tr>
<td>710 – 740</td>
<td>Furnace</td>
<td>max. 235</td>
</tr>
</tbody>
</table>

Stress-relief annealing °C

<table>
<thead>
<tr>
<th>Annealed</th>
<th>Cooling</th>
<th>Hardness HB</th>
</tr>
</thead>
<tbody>
<tr>
<td>approx. 600</td>
<td>Furnace</td>
<td></td>
</tr>
</tbody>
</table>

Hardening °C

<table>
<thead>
<tr>
<th>840 – 870</th>
<th>Quenching</th>
<th>Hardness after quenching HRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil or saltbath, 180 – 220 °C</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>

Tempering °C

<table>
<thead>
<tr>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>50</td>
<td>48</td>
<td>46</td>
<td>42</td>
<td>36</td>
<td>28</td>
</tr>
</tbody>
</table>

Time-temperature-transformation diagram

Tempering diagram

[S can be raised between 0.05 and 0.1 % whereas Ni can be left out completely.]
Formadur® 2316/2316 Superclean

X38CrMo16 C 0.36 Cr 16.00 Mo 1.20

Steel properties
Increased corrosion resistance in comparison to Formadur® 2083, good polishability. Usually this steel grade is supplied in a quenched and tempered condition with a working hardness of approx. 300 HB.

Standards
AISI 420mod

Physical properties

<table>
<thead>
<tr>
<th>Coefficient of thermal expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>at °C</td>
</tr>
<tr>
<td>20 - 100</td>
</tr>
<tr>
<td>10^-6 m/(m • K)</td>
</tr>
<tr>
<td>10.5</td>
</tr>
<tr>
<td>10.7</td>
</tr>
<tr>
<td>10.8</td>
</tr>
<tr>
<td>10.9</td>
</tr>
<tr>
<td>11.1</td>
</tr>
<tr>
<td>11.3</td>
</tr>
<tr>
<td>11.5</td>
</tr>
<tr>
<td>11.6</td>
</tr>
<tr>
<td>11.7</td>
</tr>
<tr>
<td>10.5</td>
</tr>
<tr>
<td>10.7</td>
</tr>
<tr>
<td>10.8</td>
</tr>
<tr>
<td>10.9</td>
</tr>
<tr>
<td>11.1</td>
</tr>
<tr>
<td>11.3</td>
</tr>
<tr>
<td>11.5</td>
</tr>
<tr>
<td>11.6</td>
</tr>
<tr>
<td>11.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermal conductivity at °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/(m • K)</td>
</tr>
<tr>
<td>20 - 100</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24.2</td>
</tr>
<tr>
<td>24.3</td>
</tr>
<tr>
<td>24.4</td>
</tr>
<tr>
<td>24.1</td>
</tr>
<tr>
<td>23.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quenched and tempered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness HB</td>
</tr>
<tr>
<td>max. 230</td>
</tr>
</tbody>
</table>

Applications
Moulds for processing plastics with corrosive reactions.

Heat treatment

<table>
<thead>
<tr>
<th>Soft annealing °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>760 – 800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnace</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardening °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1020 – 1050</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quenching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil or saltbath, 500 – 550 °C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardness after quenching HRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tempering °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
</tr>
</tbody>
</table>

| 200 |
| 47 |

| 300 |
| 46 |

| 400 |
| 47 |

| 500 |
| 32 |

| 600 |

Time-temperature-transformation diagram

Tempering diagram
Steel properties
High hot tensile strength and toughness. Good thermal conductivity and insusceptibility to hot cracking. Can be water-cooled to a limited extent.

Standards
- **AISI H11**
- **AFNOR Z38CDV5**

Physical properties

<table>
<thead>
<tr>
<th>Coefficient of thermal expansion</th>
<th>20 - 100</th>
<th>20 - 150</th>
<th>20 - 200</th>
<th>20 - 250</th>
<th>20 - 300</th>
<th>20 - 350</th>
<th>20 - 400</th>
<th>20 - 450</th>
<th>20 - 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-6} m/(m • K)</td>
<td>11.7</td>
<td>11.9</td>
<td>12.2</td>
<td>12.4</td>
<td>12.6</td>
<td>12.8</td>
<td>13.0</td>
<td>13.1</td>
<td>13.3</td>
</tr>
</tbody>
</table>

Quenched and tempered

<table>
<thead>
<tr>
<th>Thermal conductivity at °C</th>
<th>23</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/(m • K)</td>
<td>24.4</td>
<td>28.2</td>
<td>28.9</td>
<td>28.8</td>
</tr>
</tbody>
</table>

Applications
Hot-work steel for universal use. Pressure casting moulds, metal extrusion tools for processing light metals, forging dies, moulds, screws and barrels for plastic processing, shrink rings and hot-shear blades.
We recommend the use of Thermodur® 2343 EFS Superclean (ESR) for the highest demands.

Heat treatment

<table>
<thead>
<tr>
<th>Soft annealing °C</th>
<th>750 – 800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling</td>
<td>Furnace</td>
</tr>
<tr>
<td>Hardness HB</td>
<td>max. 230</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress-relief annealing °C</th>
<th>approx. 600 – 650</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling</td>
<td>Furnace</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardening °C</th>
<th>1000 – 1030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quenching</td>
<td>Oil or saltbath, 500 – 550 °C</td>
</tr>
<tr>
<td>Hardness after quenching HRC</td>
<td>54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tempering °C</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRC</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>54</td>
<td>54</td>
<td>48</td>
<td>38</td>
<td>31</td>
</tr>
</tbody>
</table>

Time-temperature-transformation diagram

Tempering diagram
Thermodur® 2344 EFS/2344 EFS Superclean

<table>
<thead>
<tr>
<th>X40CrMoV5-1</th>
<th>C 0.40</th>
<th>Si 1.00</th>
<th>Cr 5.30</th>
<th>Mo 1.40</th>
<th>V 1.00</th>
</tr>
</thead>
</table>

Steel properties
High hot-wear resistance, high hot tensile strength and toughness. Good thermal conductivity and insusceptibility to hot cracking. Can be water-cooled to a limited extent.

Standards
<table>
<thead>
<tr>
<th>AISI</th>
<th>H13</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFNOR</td>
<td>Z40CDV5</td>
</tr>
</tbody>
</table>

Physical properties

<table>
<thead>
<tr>
<th>Coefficient of thermal expansion at °C</th>
<th>20 - 100</th>
<th>20 - 200</th>
<th>20 - 300</th>
<th>20 - 400</th>
<th>20 - 500</th>
<th>20 - 600</th>
<th>20 - 700</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^± (m • K)</td>
<td>10.9</td>
<td>11.9</td>
<td>12.3</td>
<td>12.7</td>
<td>13.0</td>
<td>13.3</td>
<td>13.5</td>
</tr>
</tbody>
</table>

Thermal conductivity at °C	23	350	700
W/(m • K) Annealed	27.2	30.5	33.4
W/(m • K) Quenched and tempered	25.5	27.6	30.3

Applications
Hot-work steel for universal use. Pressure casting moulds and metal extrusion tools for processing light metals, forging moulds, moulds, screws and barrels for plastic processing, nitrided ejectors and hot-shear blades.

We recommend the use of Thermodur® 2344 EFS Superclean (ESR) for the highest demands.

Heat treatment

<table>
<thead>
<tr>
<th>Soft annealing °C</th>
<th>750 - 800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling</td>
<td>Furnace</td>
</tr>
<tr>
<td>Hardness HB max.</td>
<td>230</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardening °C</th>
<th>1010 – 1030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quenching</td>
<td>Air, oil or saltbath, 500 – 550 °C</td>
</tr>
<tr>
<td>Hardness after quenching HRC</td>
<td>54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tempering °C HRC</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRC</td>
<td>53</td>
<td>52</td>
<td>52</td>
<td>54</td>
<td>56</td>
<td>54</td>
<td>50</td>
<td>42</td>
<td>32</td>
</tr>
</tbody>
</table>

Time-temperature-transformation diagram

Tempering diagram
Cryodur® 2357

<table>
<thead>
<tr>
<th>Steel properties</th>
<th>C 0.50</th>
<th>Si 0.30</th>
<th>Mn 0.70</th>
<th>Cr 3.35</th>
<th>Mo 1.60</th>
<th>V 0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>High toughness and wear resistance, high compression strength combined with dimensional stability and good polishability.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standards</th>
<th>AISI S7</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>Coefficient of thermal expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>at °C</td>
<td>20 - 200 20 - 400</td>
</tr>
<tr>
<td>(10^{-6} \text{ m/(m \cdot K)})</td>
<td>12.2 12.5</td>
</tr>
<tr>
<td>Thermal conductivity at °C</td>
<td>20 200 400</td>
</tr>
<tr>
<td>(\text{W/(m \cdot K)})</td>
<td>28.9 30.0 31.0</td>
</tr>
</tbody>
</table>

| Applications | Cold-work tool steel for punching tools, moulds, scrap shears, piercing dies, hobbers, coining dies, deburring tools, plastic moulds and pelletters. |

<table>
<thead>
<tr>
<th>Heat treatment</th>
<th>Soft annealing °C</th>
<th>Cooling</th>
<th>Hardness HB</th>
</tr>
</thead>
<tbody>
<tr>
<td>810 - 850</td>
<td>Furnace</td>
<td>approx. 220</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress-relief annealing °C</th>
<th>Cooling</th>
<th>approx. 600</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hardening °C</th>
<th>Quenching</th>
<th>Hardness after quenching HRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>920 – 970</td>
<td>Air or oil</td>
<td>60 – 62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tempering °C</th>
<th>Temper HRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>200</td>
<td>58</td>
</tr>
<tr>
<td>300</td>
<td>54</td>
</tr>
<tr>
<td>400</td>
<td>53</td>
</tr>
<tr>
<td>500</td>
<td>53</td>
</tr>
<tr>
<td>550</td>
<td>50</td>
</tr>
<tr>
<td>600</td>
<td>44</td>
</tr>
</tbody>
</table>

Tempering diagram

Reference numbers in brackets are not standardized in EN ISO 4957.
Formadur® 2361

Steel properties

Corrosion-resistant steel for plastic moulding characterized by a very good wear resistance.

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>Coefficient of thermal expansion</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>at °C</td>
<td>20 - 200 20 - 200 20 - 300 20 - 400</td>
</tr>
<tr>
<td></td>
<td>10^{-5} m/(m • K)</td>
<td>10.5 11.0 11.0 12.0</td>
</tr>
<tr>
<td>Thermal conductivity at °C</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>W/(m • K)</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

Applications

Plastic moulds, injection nozzles, valve components and ball bearings.

<table>
<thead>
<tr>
<th>Heat treatment</th>
<th>Soft annealing °C</th>
<th>Cooling</th>
<th>Hardness HB</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 – 850</td>
<td></td>
<td>Slow, e.g. furnace</td>
<td>max. 265</td>
</tr>
<tr>
<td>Hardening °C</td>
<td>Quenching</td>
<td></td>
<td>Hardness after quenching HRC</td>
</tr>
<tr>
<td>1000 – 1050</td>
<td>Oil</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>Tempering °C</td>
<td></td>
<td></td>
<td>500 550 600</td>
</tr>
<tr>
<td>HRC</td>
<td>100 200 300 400</td>
<td></td>
<td>54 54 54</td>
</tr>
<tr>
<td></td>
<td>58 56 54 54 54</td>
<td></td>
<td>50 40</td>
</tr>
</tbody>
</table>

Tempering diagram

![Tempering diagram](attachment:image.png)
Cryodur® 2363

<table>
<thead>
<tr>
<th>X100CrMoV5</th>
<th>C 1.00</th>
<th>Si 0.30</th>
<th>Mn 0.50</th>
<th>Cr 5.00</th>
<th>Mo 0.95</th>
<th>V 0.20</th>
</tr>
</thead>
</table>

Steel properties
High dimensional stability during heat treatment. High wear resistance and toughness.

Standards
- **AISI** A2
- **AFNOR** Z100CDV5

Physical properties
- **Thermal conductivity at °C**
 - W/(m • K)
 - 20: 15.8
 - 350: 26.7
 - 700: 29.1

Applications
Cutting tools, rolls, shear blades, cold pilger mandrels, cold stamping tools and moulds for processing plastics.

Heat treatment

<table>
<thead>
<tr>
<th>Soft annealing °C</th>
<th>Cooling</th>
<th>Hardness HB</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 – 840</td>
<td>Furnace</td>
<td>max. 231</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress-relief annealing °C</th>
<th>Cooling</th>
<th>Hardness after quenching HRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>approx. 650</td>
<td>Furnace</td>
<td>63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardening °C</th>
<th>Quenching</th>
<th>Hardness after quenching HRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>930 – 970</td>
<td>Air, oil or saltbath, 500 – 550 °C</td>
<td>63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tempering °C</th>
<th>HRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>63</td>
</tr>
<tr>
<td>200</td>
<td>62</td>
</tr>
<tr>
<td>300</td>
<td>59</td>
</tr>
<tr>
<td>400</td>
<td>57</td>
</tr>
<tr>
<td>500</td>
<td>59</td>
</tr>
<tr>
<td>600</td>
<td>52</td>
</tr>
</tbody>
</table>

Time-temperature transformation diagram

Tempering diagram
Cryodur® 2379

<table>
<thead>
<tr>
<th>X153CrMoV12</th>
<th>C 1.55</th>
<th>Si 0.30</th>
<th>Mn 0.35</th>
<th>Cr 12.00</th>
<th>Mo 0.75</th>
<th>V 0.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel properties</td>
<td>12% ledeburitic chromium steel. Maximum wear resistance, sufficient toughness. Best cutting-edge endurance and resistance to tempering, can be nitrided after special heat treatment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standards</td>
<td>AISI D2</td>
<td>AFNOR Z160CDV12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical properties</td>
<td>Coefficient of thermal expansion at °C</td>
<td>(10^{-6} \text{ m/(m • K)})</td>
<td>Thermal conductivity at °C</td>
<td>W/(m • K)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 - 100</td>
<td>20 - 200</td>
<td>20 - 300</td>
<td>20 - 400</td>
<td>10.5</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>350</td>
<td>700</td>
<td>16.7</td>
<td>20.5</td>
<td>24.2</td>
</tr>
<tr>
<td>Applications</td>
<td>Thread rolling rolls and thread rolling dies, cold extrusion tools, cutting and stamping tools for sheet thicknesses up to 6 mm, precision cutting tools up to 12 mm. Cold pilger mandrels, circular-shear blades, deep-drawing tools, pressure pads and highly wear-resistant plastic moulds.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat treatment</td>
<td>Soft annealing °C</td>
<td>830 – 860</td>
<td>Cooling</td>
<td>Furnace</td>
<td>Hardness HB</td>
<td>max. 250</td>
</tr>
<tr>
<td></td>
<td>Stress-relief annealing °C</td>
<td>650 – 700</td>
<td>Cooling</td>
<td>Furnace</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardening °C</td>
<td>1000 – 1050</td>
<td>Quenching</td>
<td>Air, oil or saltbath, 500 – 550 °C</td>
<td>Hardness after quenching HRC</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Tempering °C (HRC)</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>Special heat treatment</td>
<td>Hardening °C</td>
<td>1050 – 1080</td>
<td>Quenching</td>
<td>Air, oil or saltbath, 500 – 550 °C</td>
<td>Hardness after quenching HRC</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Tempering °C (three times) (HRC)</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
</tr>
</tbody>
</table>
Cryodur® 2379

Time-temperature-transformation diagram
Hardening temperature: 1030 °C

Tempering diagram

Time-temperature-transformation diagram
Hardening temperature: 1080 °C

Tempering diagram
Cryodur® 2709

<table>
<thead>
<tr>
<th>(X3NiCoMoTi18-9-5)</th>
<th>C ≤ 0.02</th>
<th>Mo 5.00</th>
<th>Ni 18.00</th>
<th>Co 10.00</th>
<th>Ti 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel properties</td>
<td>Low susceptibility to distortion, precipitation hardening, high yield point and tensile strength combined with good toughness.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standards</td>
<td>AISI 18MAR300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical properties</td>
<td>Coefficient of thermal expansion at °C</td>
<td>20 - 100</td>
<td>20 - 150</td>
<td>20 - 200</td>
<td>20 - 250</td>
</tr>
<tr>
<td></td>
<td>10^6 m/(m • K)</td>
<td>10.1</td>
<td>10.3</td>
<td>10.5</td>
<td>10.7</td>
</tr>
<tr>
<td>Precipitation hardened</td>
<td>Thermal conductivity at °C</td>
<td>20 - 100</td>
<td>20 - 150</td>
<td>20 - 200</td>
<td>20 - 250</td>
</tr>
<tr>
<td></td>
<td>W/(m • K)</td>
<td>18.4</td>
<td>20.4</td>
<td>22.7</td>
<td>23.2</td>
</tr>
<tr>
<td>Applications</td>
<td>Casings for cold extrusion tools, pressure casting moulds for light metals and plastic moulds of intricate design.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat treatment</td>
<td>Soft annealing °C</td>
<td>820 – 850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling</td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hardness HB</td>
<td>max. 340</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ausscheidungshärte °C</td>
<td>490 / 6 hr / (Air)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attainable hardness HRC</td>
<td>approx. 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference numbers in brackets are not standardized in EN ISO4957.
Formadur® 2711

54NiCrMoV6 | C 0.55 | Cr 1.10 | Ni 1.70 | Mo 0.50 | V 0.10

Steel properties
Pre-hardened plastic mould steel, hardness in as-delivered condition 355 to 400 HB (square, flat) and 370 – 410 HB (round). Increased compressive strength in comparison to Formadur® 2738, good polishability.

Standards
AISI –L6

Physical properties

<table>
<thead>
<tr>
<th>Coefficient of thermal expansion</th>
<th>at °C</th>
<th>20 – 100</th>
<th>20 – 150</th>
<th>20 – 200</th>
<th>20 – 250</th>
<th>20 – 300</th>
<th>20 – 350</th>
<th>20 – 400</th>
<th>20 – 450</th>
<th>20 – 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>10⁻⁶ m/(m • K)</td>
<td></td>
<td>12.2</td>
<td>12.5</td>
<td>12.7</td>
<td>13.0</td>
<td>13.3</td>
<td>13.5</td>
<td>13.8</td>
<td>13.9</td>
<td>14.1</td>
</tr>
</tbody>
</table>

Quenched and tempered

| Thermal conductivity at °C | 23 | 150 | 300 | 350 | 400 | 500 |
| W/(m • K) | 30.5 | 32.1 | 30.8 | 29.6 | 28.7 | 26.5 |

Applications
Plastic moulds with increased demands on compression strength and wear resistance.

Heat treatment

| Soft annealing °C | 650 – 700 | Cooling | Furnace | max. 240 |
| Hardening °C | 830 – 870 | Quenching | Air or oil | 57 |

| Tempering °C | 100 | 200 | 300 | 400 | 450 | 500 | 550 | 600 | 650 |
| HRC | 56 | 54 | 51 | 47 | 44 | 42 | 39 | 36 | 30 |

Time-temperature-transformation diagram

Tempering diagram
Formadur® 2738

40CrMnNiMo8-6-4 C 0.40 Mn 1.50 Cr 1.90 Ni 1.00 Mo 0.20

Steel properties
Pre-hardened plastic mould steel, hardness in as-delivered condition 280 to 325 HB. Good machinability, suitable for texturing, improved through hardening in comparison to Formadur® 2711, good polishability.

Standards
AISI P20+Ni

Physical properties

<table>
<thead>
<tr>
<th>Coefficient of thermal expansion</th>
<th>20 - 100</th>
<th>20 - 200</th>
<th>20 - 300</th>
<th>20 - 400</th>
<th>20 - 500</th>
<th>20 - 600</th>
<th>20 - 700</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-6} m/(m • K)</td>
<td>11.1</td>
<td>12.9</td>
<td>13.4</td>
<td>13.8</td>
<td>14.2</td>
<td>14.6</td>
<td>14.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermal conductivity at °C</th>
<th>20</th>
<th>350</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/(m • K)</td>
<td>34.5</td>
<td>33.5</td>
<td>32.0</td>
</tr>
</tbody>
</table>

Applications
Large plastic moulds with deep engravings and intensive impacts on the core. Formadur® 2738 is the logical development of Formadur® 2311, a pre-hardened plastic mould steel for use in large moulds, which also have to display high core strength. The additional nickel content of 1 % increases through hardening. Formadur® 2738 is a micro-alloyed, vacuum-degassed steel with the following excellent features: good machinability, outstanding polishability, good texturing properties.

Heat treatment

<table>
<thead>
<tr>
<th>Soft annealing °C</th>
<th>710 – 740</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling</td>
<td>Furnace</td>
</tr>
<tr>
<td>Hardening °C</td>
<td>840 – 870</td>
</tr>
<tr>
<td>Quenching</td>
<td>Polymer or oil</td>
</tr>
<tr>
<td>Tempering °C</td>
<td>100 – 300</td>
</tr>
<tr>
<td>Hardness after quenching HRC</td>
<td>400 – 700</td>
</tr>
<tr>
<td>HRC</td>
<td>51 – 42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time-temperature-transformation diagram</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hardness in HRc</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>48</td>
</tr>
<tr>
<td>52</td>
<td>46</td>
</tr>
<tr>
<td>50</td>
<td>44</td>
</tr>
<tr>
<td>48</td>
<td>42</td>
</tr>
<tr>
<td>46</td>
<td>40</td>
</tr>
<tr>
<td>44</td>
<td>38</td>
</tr>
<tr>
<td>42</td>
<td>36</td>
</tr>
<tr>
<td>40</td>
<td>34</td>
</tr>
<tr>
<td>38</td>
<td>32</td>
</tr>
<tr>
<td>36</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tempering diagram</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hardness in HB</th>
<th>235</th>
</tr>
</thead>
<tbody>
<tr>
<td>710</td>
<td>51</td>
</tr>
<tr>
<td>700</td>
<td>48</td>
</tr>
<tr>
<td>690</td>
<td>46</td>
</tr>
<tr>
<td>680</td>
<td>44</td>
</tr>
<tr>
<td>670</td>
<td>42</td>
</tr>
<tr>
<td>660</td>
<td>40</td>
</tr>
<tr>
<td>650</td>
<td>38</td>
</tr>
<tr>
<td>640</td>
<td>36</td>
</tr>
<tr>
<td>630</td>
<td>34</td>
</tr>
<tr>
<td>620</td>
<td>32</td>
</tr>
<tr>
<td>610</td>
<td>30</td>
</tr>
</tbody>
</table>
Formadur® 2764

(X19NiCrMo4) C 0.19 Cr 1.30 Mo 0.20 Ni 4.10

<table>
<thead>
<tr>
<th>Steel properties</th>
<th>Case-hardening steel, high core strength, good polishability.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards</td>
<td>AISI – P21</td>
</tr>
<tr>
<td>Physical properties</td>
<td>Coefficient of thermal expansion</td>
</tr>
<tr>
<td></td>
<td>at °C</td>
</tr>
<tr>
<td></td>
<td>10⁴ m/(m • K)</td>
</tr>
<tr>
<td>Thermal conductivity at °C</td>
<td>20</td>
</tr>
<tr>
<td>W/(m • K)</td>
<td>33.5</td>
</tr>
<tr>
<td>Applications</td>
<td>Highly stressed plastic moulds.</td>
</tr>
</tbody>
</table>

Heat treatment

<table>
<thead>
<tr>
<th>Soft annealing °C 620 – 660</th>
<th>Cooling Furnace</th>
<th>Hardness HB max. 250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress-relief annealing °C 600</td>
<td>Cooling Furnace</td>
<td></td>
</tr>
<tr>
<td>Carburizing °C 860 – 890</td>
<td>Intermediate annealing °C 600 – 630</td>
<td>Hardening °C 780 – 810</td>
</tr>
<tr>
<td>Tempering °C 860 – 890</td>
<td>600 – 630</td>
<td>800 – 830</td>
</tr>
<tr>
<td>after oil hardening HRC</td>
<td>100 200 300 400 500 600</td>
<td></td>
</tr>
<tr>
<td>after air hardening HRC</td>
<td>62 60 58 56 52 49</td>
<td></td>
</tr>
</tbody>
</table>

Applications

- High-stressed plastic moulds.

Reference numbers in brackets are not standardized in EN ISO4957.
Cryodur® 2767

45NiCrMo16 C 0.45 Si 0.25 Mn 0.35 Cr 1.40 Mo 0.20 Ni 4.00

Steel properties
High hardenability and toughness, highly suitable for polishing, texturing and EDM machining.

Standards
AISI 6F3

Physical properties

<table>
<thead>
<tr>
<th>Coefficient of thermal expansion</th>
<th>20 – 100</th>
<th>20 – 150</th>
<th>20 – 200</th>
<th>20 – 250</th>
<th>20 – 300</th>
<th>20 – 350</th>
<th>20 – 400</th>
<th>20 – 450</th>
<th>20 – 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>at °C 10^-6 m/(m • K)</td>
<td>11.3</td>
<td>11.7</td>
<td>11.9</td>
<td>12.2</td>
<td>12.5</td>
<td>12.2</td>
<td>12.0</td>
<td>12.1</td>
<td>12.4</td>
</tr>
</tbody>
</table>

Quenched and tempered

<table>
<thead>
<tr>
<th>Thermal conductivity at °C W/(m • K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>350</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>500</td>
</tr>
</tbody>
</table>

Quenched and tempered

<table>
<thead>
<tr>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutlery moulds, cutting tools for thick material, billet-shear blades, drawing jaws, solid embossing and bending tools, plastic moulds, casings.</td>
</tr>
</tbody>
</table>

Heat treatment

<table>
<thead>
<tr>
<th>Soft annealing °C 610 – 650</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Furnace</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress-relief annealing °C approx. 600 – 650</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Furnace</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardening °C 840 – 870</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quenching Air, oil or saltbath, 180 – 220 °C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tempering °C HRC 100 200 300 400 500 600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness after quenching HRC 56</td>
</tr>
</tbody>
</table>

Tempering diagram
Cryodur® 2842

<table>
<thead>
<tr>
<th>90MnCrV8</th>
<th>C 0.90</th>
<th>Si 0.20</th>
<th>Mn 2.00</th>
<th>Cr 0.40</th>
<th>V 0.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel properties</td>
<td>Good cutting-edge endurance, high hardenability, dimensionally stable during heat treatment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standards</td>
<td>AISI O2</td>
<td>AFNOR 90MV8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical properties</td>
<td>Coefficient of thermal expansion at °C, 10^{-6} m/(m • K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 - 100</td>
<td>20 - 200</td>
<td>20 - 300</td>
<td>20 - 400</td>
<td>20 - 500</td>
</tr>
<tr>
<td></td>
<td>12.2</td>
<td>13.2</td>
<td>13.8</td>
<td>14.3</td>
<td>14.7</td>
</tr>
<tr>
<td>Thermal conductivity at °C, W/(m • K)</td>
<td>20</td>
<td>350</td>
<td>700</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33.0</td>
<td>32.0</td>
<td>31.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applications</td>
<td>Tool steel for universal use, cutting and stamping tools for sheet metal up to 6 mm thick, thread-cutting tools, drills, reamers, gauges, measuring tools, plastic moulds, shear blades, guide strips.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heat treatment

Soft annealing °C	680 – 720	Cooling	Furnace	Hardness HB	max. 220
Stress-relief annealing °C	approx. 650	Cooling	Furnace		
Hardening °C	790 – 820	Quenching	Oil or saltbath, 180 – 220 °C	Hardness after quenching HRC	64
Tempering °C	HRC				
100	200	300	400	500	600
63	60	56	50	42	38

Time-temperature-transformation diagram

Tempering diagram
Formadur® 2891

34CrAlNi7 C 0.35 Si 0.40 Al 1.00 Cr 1.70 Mo 0.20 Ni 1.00

Physical properties
- Quenched and tempered QT

<table>
<thead>
<tr>
<th>Heat treatment diameter in mm Ø</th>
<th>Yield stress (R_{p0.2}) min. in MPa</th>
<th>Tensile strength (R_m) in MPa</th>
<th>Elongation at fracture A min. in %</th>
<th>Reduction of area at fracture Z min. in %</th>
<th>Notched impact energy ((\text{ISO-V})) in J Av min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 – 40</td>
<td>680</td>
<td>900 – 1100</td>
<td>10</td>
<td>–</td>
<td>30</td>
</tr>
<tr>
<td>> 40 – 100</td>
<td>650</td>
<td>850 – 1050</td>
<td>12</td>
<td>–</td>
<td>30</td>
</tr>
<tr>
<td>> 100 – 160</td>
<td>600</td>
<td>800 – 1000</td>
<td>13</td>
<td>–</td>
<td>35</td>
</tr>
<tr>
<td>> 160 – 250</td>
<td>600</td>
<td>800 – 1000</td>
<td>13</td>
<td>–</td>
<td>35</td>
</tr>
</tbody>
</table>

Applications
- Aluminium-alloyed nitriding steel for large cross sections, suitable for piston rods, extruders, cylinders.

Hardness at different treatment stages
- Soft-annealed HB max. 248
- Nitrided surface hardness HV1 approx. 950

Heat treatment
- Soft annealing °C 680 – 720
- Hardening °C Furnace
- Quenching Polymer or oil
- Tempering °C 580 – 700
- Nitriding °C 480 – 570

Thermal expansion
- Tempering °C -191 – +16
- Linear coefficient of thermal expansion \(\alpha \) 10\(^{-6} \) K\(^{-1} \) 9.1 11.1 12.1 12.9 13.5 13.9

Time-temperature-transformation diagram

Tempering diagram
Cryodur® 2990

(-X100CrMoV8-1-1) C 1.00 Si 0.90 Cr 8.00 Mo 1.60 V 1.60

Steel properties

Newly developed ledeburitic cold-work steel with high hardness, good toughness and high tempering resistance combined with high wear resistance.

Physical properties

<table>
<thead>
<tr>
<th>Coefficient of thermal expansion</th>
<th>Coefficient of thermal expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>at °C</td>
<td>at °C</td>
</tr>
<tr>
<td>at °C</td>
<td>W/(m • K)</td>
</tr>
<tr>
<td>20 - 100</td>
<td>20 - 100</td>
</tr>
<tr>
<td>20 - 150</td>
<td>20 - 150</td>
</tr>
<tr>
<td>20 - 200</td>
<td>20 - 200</td>
</tr>
<tr>
<td>20 - 250</td>
<td>20 - 250</td>
</tr>
<tr>
<td>20 - 300</td>
<td>20 - 300</td>
</tr>
<tr>
<td>20 - 350</td>
<td>20 - 350</td>
</tr>
<tr>
<td>20 - 400</td>
<td>20 - 400</td>
</tr>
<tr>
<td>20 - 450</td>
<td>20 - 450</td>
</tr>
<tr>
<td>20 - 500</td>
<td>20 - 500</td>
</tr>
<tr>
<td>10^-6 m/(m • K)</td>
<td>10^-6 m/(m • K)</td>
</tr>
<tr>
<td>11.4</td>
<td>11.4</td>
</tr>
<tr>
<td>11.6</td>
<td>11.6</td>
</tr>
<tr>
<td>11.7</td>
<td>11.7</td>
</tr>
<tr>
<td>11.9</td>
<td>11.9</td>
</tr>
<tr>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>12.1</td>
<td>12.1</td>
</tr>
<tr>
<td>12.3</td>
<td>12.3</td>
</tr>
<tr>
<td>12.4</td>
<td>12.4</td>
</tr>
<tr>
<td>12.6</td>
<td>12.6</td>
</tr>
</tbody>
</table>

Thermal conductivity at °C

<table>
<thead>
<tr>
<th>Thermal conductivity at °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
</tr>
<tr>
<td>20 - 100</td>
</tr>
<tr>
<td>20 - 150</td>
</tr>
<tr>
<td>20 - 200</td>
</tr>
<tr>
<td>20 - 250</td>
</tr>
<tr>
<td>20 - 300</td>
</tr>
<tr>
<td>20 - 350</td>
</tr>
<tr>
<td>20 - 400</td>
</tr>
<tr>
<td>20 - 450</td>
</tr>
<tr>
<td>20 - 500</td>
</tr>
<tr>
<td>W/(m • K)</td>
</tr>
<tr>
<td>24.0</td>
</tr>
<tr>
<td>25.9</td>
</tr>
<tr>
<td>26.8</td>
</tr>
<tr>
<td>27.1</td>
</tr>
<tr>
<td>27.4</td>
</tr>
<tr>
<td>27.2</td>
</tr>
<tr>
<td>26.8</td>
</tr>
</tbody>
</table>

Applications

Cutting and punching tools including precision cutting tools, threading dies and rolls, rotary shear blades, cold pilger mandrels, pressure pads and plastic moulds, cold-forming and deep-drawing dies, woodworking tools and cold rolls.

Heat treatment

<table>
<thead>
<tr>
<th>Soft annealing °C</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>830 – 860</td>
<td>Furnace</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress-relief annealing °C</th>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>approx. 650</td>
<td>Furnace</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardening °C</th>
<th>Quenching</th>
<th>Hardness after quenching HRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1030° – 1080°</td>
<td>Air, oil or saltbath, 500 – 550 °C</td>
<td>62 – 64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tempering °C</th>
<th>Hardness HB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) HRC</td>
<td>max. 250</td>
</tr>
</tbody>
</table>

| 2) HRC | 100 200 300 400 500 525 550 575 600 |
|----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| HRC | 62 59 57 58 60 60 59 55 54 46 |
| HRC | 64 59 59 60 63 63 61 57 48 48 |

Reference numbers in brackets are not standardized in EN ISO4957.
Rapidur® 3343

<table>
<thead>
<tr>
<th>HS6-5-2C</th>
<th>C 0.90</th>
<th>Si 0.30</th>
<th>Mn 0.30</th>
<th>Cr 4.10</th>
<th>Mo 5.00</th>
<th>V 1.90</th>
<th>W 6.40</th>
</tr>
</thead>
</table>

Steel properties
Standard high-speed steel grade. High toughness and good cutting power owing to its well-balanced alloy composition. Therefore suitable for a wide variety of applications.

Standards
- **AISI M2**
- **AFNOR Z85WDCV06-05-04-02**

Physical properties
- **Coefficient of thermal expansion at °C**
 - W/(m • K)
 - 20: 32.8
 - 350: 23.5
 - 700: 25.5

Applications
- Plastic moulds with increased wear resistance, screws.

Heat treatment
- **Soft annealing °C**
 - 770 - 860
- **Stress-relief annealing °C**
 - 630 – 650
- **Cooling**
 - Furnace
- **Hardness HB**
 - max. 269

Heat treatment table
- 1st pre-heating °C
 - up to approx. 400
- 2nd and 3rd pre-heating °C
 - a) 850
- Quenching
 - b) 850 and 1050
- Hardening °C
 - a) Saltbath, 550 °C
 - b) Oil
 - c) Air
- Tempering °C
 - at least
- Hardness after tempering HRC
 - 64 - 66

Tempering diagram
- For cold-forming tools with a complex geometry, a hardening temperature at the lower end of the quoted range is recommended.
- The stated hardening temperatures apply to saltbath hardening only. For vacuum hardening, we suggest a reduction of 10 °C to 30 °C.

Isothermal time-temperature-transformation diagram

Tempering diagram

Formadur® PH X Superclean

Formadur® PH X Superclean is a corrosion-resistant, precipitation hardened steel with high strength. It shows excellent polishability due to the applied remelting process. Compared to Formadur® 2316, hardness in as-delivered condition and corrosion resistance are improved.

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>Coefficient of thermal expansion at °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 - 100 20 - 150 20 - 200 20 - 250 20 - 300 20 - 350 20 - 400 20 - 450 20 - 500</td>
</tr>
<tr>
<td>$10^4 \text{m/(m} \cdot \text{K)}$</td>
<td>10.4 10.6 10.9 11.1 11.4 11.5 11.7 11.9 12.0</td>
</tr>
</tbody>
</table>

| Applications | Formadur® PH X Superclean is recommended for tools used in the processing of corrosive plastics. Further applications for components in aircraft and chemical industries. |

| Heat treatment | Formadur® PH X Superclean usually is supplied in precipitation-hardened condition with a hardness of 40 HRC. |

Weight loss diagram

Ageing diagram

Reference numbers in brackets are not standardized in EN ISO 4957.
Comparison of machinability of conventional plastic mould steel Formadur® 2711 with Formadur® PH 42 Superclean.
Formadur® 320/320 Superclean

| Steel properties | Heat-treated mould steel with improved quenching and tempering properties in comparison to 1.2738. Good machinability, polishable, weldable and can easily be textured. Formadur® 320 is either available at a hardness of 280 – 325 HB or 310 – 355 HB. This grade offers substantial improvements, especially for building larger and complex moulds. Specific modifications of the grade’s components as well as additional smelting and secondary metallurgy ensure Formadur® 320’s outstanding properties. We recommend the use of Formadur® 320 Superclean (ESR) for the highest demands. |
| C 0.34 | Mn 0.80 | Cr 1.70 | Ni 0.50 | Mo 0.40 |

Physical properties	Coefficient of thermal expansion						
at °C	20 - 100	20 - 200	20 - 300	20 - 400	20 - 500	20 - 600	20 - 700
10⁻⁶ m/(m • K)	11.1	12.9	13.4	13.5	13.8	14.1	14.3

| Thermal conductivity at °C |
| 20 | 350 | 700 |
| W/(m • K) | 36.0 | 37.4 | 33.0 |

| Applications | Formadur® 320 is highly suitable for large-format plastic injection and extrusion moulds with deep engraving and high demands on core strength, such as with bumpers, tailgates, fenders, spoilers, instrument panels and TV housings to name a few. At a supplied hardness of 310 – 355 HB, maximum wear resistance is guaranteed. |

| Heat treatment | Soft annealing °C |
| 710 – 740 |

| Cooling |
| Furnace |

| Hardness HB | max. 235 |

| Hardening °C | Quenching |
| 820 – 850 |
| Polymer or oil |

| Hardness after quenching HRC | 51 |

Tempering °C	HRC					
100	200	300	400	500	600	700
51	50	48	47	42	35	28

Time-temperature-transformation-diagram

Tempering diagram
Machinability of X33CrS16 and Corroplast® in % (hardness 325 HB)

<table>
<thead>
<tr>
<th>Process</th>
<th>X33CrS16</th>
<th>Corroplast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roughing</td>
<td>100 %</td>
<td>140 %</td>
</tr>
<tr>
<td>Finishing milling</td>
<td>100 %</td>
<td>135 %</td>
</tr>
<tr>
<td>Grinding</td>
<td>100 %</td>
<td>135 %</td>
</tr>
<tr>
<td>Drilling</td>
<td>100 %</td>
<td>150 %</td>
</tr>
<tr>
<td>Thread cutting</td>
<td>100 %</td>
<td>140 %</td>
</tr>
</tbody>
</table>
Hardness comparison table

<table>
<thead>
<tr>
<th>Tensile strength</th>
<th>Brinell hardness</th>
<th>Vickers hardness</th>
<th>Rockwell hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_m MPa</td>
<td>d mm</td>
<td>HB 60</td>
<td>HV 60</td>
</tr>
<tr>
<td>255</td>
<td>6.63</td>
<td>76.0</td>
<td>80</td>
</tr>
<tr>
<td>270</td>
<td>6.45</td>
<td>80.7</td>
<td>85</td>
</tr>
<tr>
<td>285</td>
<td>6.30</td>
<td>85.5</td>
<td>90</td>
</tr>
<tr>
<td>305</td>
<td>6.16</td>
<td>90.2</td>
<td>95</td>
</tr>
<tr>
<td>320</td>
<td>6.01</td>
<td>95.0</td>
<td>100</td>
</tr>
<tr>
<td>335</td>
<td>5.90</td>
<td>99.8</td>
<td>105</td>
</tr>
<tr>
<td>350</td>
<td>5.75</td>
<td>105</td>
<td>110</td>
</tr>
<tr>
<td>370</td>
<td>5.65</td>
<td>109</td>
<td>115</td>
</tr>
<tr>
<td>385</td>
<td>5.54</td>
<td>114</td>
<td>120</td>
</tr>
<tr>
<td>400</td>
<td>5.43</td>
<td>119</td>
<td>125</td>
</tr>
<tr>
<td>415</td>
<td>5.33</td>
<td>124</td>
<td>130</td>
</tr>
<tr>
<td>430</td>
<td>5.26</td>
<td>128</td>
<td>135</td>
</tr>
<tr>
<td>450</td>
<td>5.16</td>
<td>133</td>
<td>140</td>
</tr>
<tr>
<td>465</td>
<td>5.08</td>
<td>138</td>
<td>145</td>
</tr>
<tr>
<td>480</td>
<td>4.99</td>
<td>143</td>
<td>150</td>
</tr>
<tr>
<td>495</td>
<td>4.93</td>
<td>147</td>
<td>155</td>
</tr>
<tr>
<td>510</td>
<td>4.85</td>
<td>152</td>
<td>160</td>
</tr>
<tr>
<td>530</td>
<td>4.79</td>
<td>156</td>
<td>165</td>
</tr>
<tr>
<td>545</td>
<td>4.71</td>
<td>162</td>
<td>170</td>
</tr>
<tr>
<td>560</td>
<td>4.66</td>
<td>166</td>
<td>175</td>
</tr>
<tr>
<td>575</td>
<td>4.59</td>
<td>171</td>
<td>180</td>
</tr>
<tr>
<td>595</td>
<td>4.53</td>
<td>176</td>
<td>185</td>
</tr>
<tr>
<td>610</td>
<td>4.47</td>
<td>181</td>
<td>190</td>
</tr>
<tr>
<td>625</td>
<td>4.43</td>
<td>185</td>
<td>195</td>
</tr>
<tr>
<td>640</td>
<td>4.37</td>
<td>190</td>
<td>200</td>
</tr>
<tr>
<td>660</td>
<td>4.32</td>
<td>195</td>
<td>205</td>
</tr>
<tr>
<td>675</td>
<td>4.27</td>
<td>199</td>
<td>210</td>
</tr>
<tr>
<td>690</td>
<td>4.22</td>
<td>204</td>
<td>215</td>
</tr>
<tr>
<td>705</td>
<td>4.18</td>
<td>209</td>
<td>220</td>
</tr>
<tr>
<td>720</td>
<td>4.13</td>
<td>214</td>
<td>225</td>
</tr>
<tr>
<td>740</td>
<td>4.08</td>
<td>219</td>
<td>230</td>
</tr>
<tr>
<td>755</td>
<td>4.05</td>
<td>223</td>
<td>235</td>
</tr>
<tr>
<td>770</td>
<td>4.01</td>
<td>228</td>
<td>240</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>Brinell hardness</td>
<td>Vickers hardness</td>
<td>Rockwell hardness</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>R_m MPa</td>
<td>Ball indentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mm d</td>
<td>HB</td>
<td>HV</td>
</tr>
<tr>
<td>785</td>
<td>3.97</td>
<td>233</td>
<td>245</td>
</tr>
<tr>
<td>800</td>
<td>3.92</td>
<td>238</td>
<td>250</td>
</tr>
<tr>
<td>820</td>
<td>3.89</td>
<td>242</td>
<td>255</td>
</tr>
<tr>
<td>835</td>
<td>3.86</td>
<td>247</td>
<td>260</td>
</tr>
<tr>
<td>850</td>
<td>3.82</td>
<td>252</td>
<td>265</td>
</tr>
<tr>
<td>865</td>
<td>3.78</td>
<td>257</td>
<td>270</td>
</tr>
<tr>
<td>880</td>
<td>3.75</td>
<td>261</td>
<td>275</td>
</tr>
<tr>
<td>900</td>
<td>3.72</td>
<td>266</td>
<td>280</td>
</tr>
<tr>
<td>915</td>
<td>3.69</td>
<td>271</td>
<td>285</td>
</tr>
<tr>
<td>930</td>
<td>3.66</td>
<td>276</td>
<td>290</td>
</tr>
<tr>
<td>950</td>
<td>3.63</td>
<td>280</td>
<td>295</td>
</tr>
<tr>
<td>965</td>
<td>3.60</td>
<td>285</td>
<td>300</td>
</tr>
<tr>
<td>995</td>
<td>3.54</td>
<td>295</td>
<td>310</td>
</tr>
<tr>
<td>1030</td>
<td>3.49</td>
<td>304</td>
<td>320</td>
</tr>
<tr>
<td>1060</td>
<td>3.43</td>
<td>314</td>
<td>330</td>
</tr>
<tr>
<td>1095</td>
<td>3.39</td>
<td>323</td>
<td>340</td>
</tr>
<tr>
<td>1125</td>
<td>3.34</td>
<td>333</td>
<td>350</td>
</tr>
<tr>
<td>1155</td>
<td>3.29</td>
<td>342</td>
<td>360</td>
</tr>
<tr>
<td>1190</td>
<td>3.25</td>
<td>352</td>
<td>370</td>
</tr>
<tr>
<td>1220</td>
<td>3.21</td>
<td>361</td>
<td>380</td>
</tr>
<tr>
<td>1255</td>
<td>3.17</td>
<td>371</td>
<td>390</td>
</tr>
<tr>
<td>1290</td>
<td>3.13</td>
<td>380</td>
<td>400</td>
</tr>
<tr>
<td>1320</td>
<td>3.09</td>
<td>390</td>
<td>410</td>
</tr>
<tr>
<td>1350</td>
<td>3.06</td>
<td>399</td>
<td>420</td>
</tr>
<tr>
<td>1385</td>
<td>3.02</td>
<td>409</td>
<td>430</td>
</tr>
<tr>
<td>1420</td>
<td>2.99</td>
<td>418</td>
<td>440</td>
</tr>
<tr>
<td>1455</td>
<td>2.95</td>
<td>428</td>
<td>450</td>
</tr>
<tr>
<td>1485</td>
<td>2.92</td>
<td>437</td>
<td>460</td>
</tr>
<tr>
<td>1520</td>
<td>2.89</td>
<td>447</td>
<td>470</td>
</tr>
<tr>
<td>1555</td>
<td>2.86</td>
<td>(456)</td>
<td>480</td>
</tr>
<tr>
<td>1595</td>
<td>2.83</td>
<td>(466)</td>
<td>490</td>
</tr>
<tr>
<td>1630</td>
<td>2.81</td>
<td>(475)</td>
<td>500</td>
</tr>
<tr>
<td>1665</td>
<td>2.78</td>
<td>(485)</td>
<td>510</td>
</tr>
</tbody>
</table>
Hardness comparison table

<table>
<thead>
<tr>
<th>Tensile strength</th>
<th>Brinell hardness</th>
<th>Vickers hardness</th>
<th>Rockwell hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_m MPa</td>
<td>Ball indentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mm d</td>
<td>HB</td>
<td>HV</td>
</tr>
<tr>
<td>1700</td>
<td>2.75</td>
<td>(494)</td>
<td>520</td>
</tr>
<tr>
<td>1740</td>
<td>2.73</td>
<td>(504)</td>
<td>530</td>
</tr>
<tr>
<td>1775</td>
<td>2.70</td>
<td>(513)</td>
<td>540</td>
</tr>
<tr>
<td>1810</td>
<td>2.68</td>
<td>(523)</td>
<td>550</td>
</tr>
<tr>
<td>1845</td>
<td>2.66</td>
<td>(532)</td>
<td>560</td>
</tr>
<tr>
<td>1880</td>
<td>2.63</td>
<td>(542)</td>
<td>570</td>
</tr>
<tr>
<td>1920</td>
<td>2.60</td>
<td>(551)</td>
<td>580</td>
</tr>
<tr>
<td>1955</td>
<td>2.59</td>
<td>(561)</td>
<td>590</td>
</tr>
<tr>
<td>1995</td>
<td>2.57</td>
<td>(570)</td>
<td>600</td>
</tr>
<tr>
<td>2030</td>
<td>2.54</td>
<td>(580)</td>
<td>610</td>
</tr>
<tr>
<td>2070</td>
<td>2.52</td>
<td>(589)</td>
<td>620</td>
</tr>
<tr>
<td>2105</td>
<td>2.51</td>
<td>(599)</td>
<td>630</td>
</tr>
<tr>
<td>2145</td>
<td>2.49</td>
<td>(608)</td>
<td>640</td>
</tr>
<tr>
<td>2180</td>
<td>2.47</td>
<td>(618)</td>
<td>650</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>660</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>670</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>680</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>690</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>700</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>720</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>740</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>760</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>780</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>800</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>820</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>840</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>860</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>880</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>900</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>920</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>940</td>
</tr>
</tbody>
</table>

Conversion of hardness values using this table is only approximate. See DIN 50150, December 1976.
Process and process parameters

<table>
<thead>
<tr>
<th>Hardness Type</th>
<th>Diameter of ball indentation in mm</th>
<th>Hardness value calculated from:</th>
<th>Process parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brinell hardness (calculated from: HB = 0.95 · HV)</td>
<td>d</td>
<td>HB = 0.102 · 2 F / π D(D – D² – d²)</td>
<td>D = 10 mm</td>
</tr>
<tr>
<td>Vickers hardness</td>
<td>HV</td>
<td></td>
<td>D ≈ 10 mm</td>
</tr>
<tr>
<td>Rockwell hardness</td>
<td>HRB</td>
<td></td>
<td>HR 30 N</td>
</tr>
<tr>
<td></td>
<td>HRC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HR 30 N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General note (liability): All statements regarding the properties or utilization of the materials or products mentioned are for the purpose of description only. Guarantees regarding the existence of certain properties or a certain utilization are only ever valid if agreed upon in writing. No responsibility is taken for the correctness of this information.